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Abstract. A variety of saliency detection methods have been proposed in
recently, which often complement each other. In this study, we try to improve
their performances by aggregating these individual ones. First, we propose an
improved Bayes aggregation method with double thresholds. Then, we compare
it with five other aggregation approaches on four benchmark datasets. Experi-
ments show that all the aggregation methods significantly outperform each
individual one. Among these aggregation methods, average and Non-negative
Matrix Factorization (NMF) weights perform best in terms of precision-recall
curve, our Bayes is very close to them. While for mean absolute error score,
NMF and our Bayes perform best. We also find that it is possible to further
improve their performance by using more accurate reference map. The ideal is
ground truth, of course. Our results could have an important impact for appli-
cations required robust and uniform saliency maps.
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1 Introduction

Visual saliency has become a very active topic in computer vision, which measures the
low-level stimuli that grabs viewers’ attention in the early stage of human vision [1],
whose research mainly contains three aspects [23]: eye fixation prediction [2], salient
object detection or saliency detection [3], objectness estimation [4]. Among them,
saliency detection is the most active area and a large number of approaches have been
proposed in the literatures [3, 5, 6, 9–16, 20–22, 25], which is also the focus of this
paper. Saliency detection, which aims to make certain regions of an image stand out
from their neighbors and catch immediate attention, has attracted growing concern and
made a great progress in recent five years. Efficient saliency detection makes great
helpfulness to a wide range of computer vision tasks, such as object detection, seg-
mentation, recognition, compression and so on.

Although many well performed saliency detection methods have been proposed in
recent years and most of them can uniformly highlight the salient object in an image,
there still exists a large margin from the ground truth, especially facing complex
scenes. In addition, the performance of each method is often image-dependent, in other
words, each method has its own advantages and disadvantages. More interestingly,
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different approaches can often be complementary to each other [5]. As illustrated by
Fig. 1, different saliency maps usually do not exhibit similar characteristics and each of
them only works well for some images or some parts of the image, and none of them
can handle all the images, such as Fig. 1(b) and (e) in the second row are comple-
mentary in measuring saliency. Thus, we can naturally ask a question: Does unity make
strength?

Only a few literatures have been explored on saliency aggregation. In [6], Li et al.
proposed a saliency detection method whose final step is Bayes integration of two
saliency maps generated by dense and sparse reconstruction errors respectively.
Focusing on eye fixation prediction, Le Meur et al. [7] made a detailed comparison of
various aggregation methods including unsupervised and learning-based schemes, in
which got the following conclusions: a simple average of the top two saliency maps
significantly outperforms each individual one, and considering more saliency maps
tends to decrease the performance. Similar to this work, Borji et al. [8] proposed two
combining strategies: Naive Bayesian evidence accumulation and linear summation,
which also demonstrated aggregation results working better than individual ones. In [5],
Conditional Random Field (CRF) was used for saliency aggregation. However, CRF is
time consuming due to its training and inference steps.

The main drawback of the above mentioned studies concerns the choice of the
tested individual methods, which have poor performance compared with the
state-of-the-art due to the quick development of this area. Therefore, there are still a big

(a) Image   (c) MC[11] (d) DSR[6] (e) DRFI[25](b) MR[10]

Fig. 1. Individual saliency methods often complement each other. Saliency aggregation can
effectively outperform each one of them.
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room can be explored and improved. Different with the aforementioned studies, we
select top five state-of-the-art methods [6, 10, 11, 13, 25] for aggregation and make
comparison on four benchmark datasets, and try to make the detected salient object
more uniform and as close as possible to the ground truth. In our study, we try to
investigate the following issues: whether we could improve the saliency detection
quality by aggregating various saliency maps or not, whether considering more sal-
iency maps decreases the performance or not, whether linear average combination
outperforms the others or not. Our results could have an important impact for appli-
cations required robust and uniform saliency maps.

The rest of the paper is organized as follows. Section 2 presents the different
methods used for saliency aggregation, including our improved Bayes aggregation.
Section 3 shows the performance of the recent saliency approaches, taken alone, and
the performance of the aggregation schemes. Finally, conclusions and future work are
listed in Sect. 4.

2 Saliency Aggregation

In this section, we introduce different aggregation approaches including previous works
and our proposed method. Among the previous works, we mainly focus the ones with
high performance. Before that, we make some definition of the symbols which will be
used in the following subsections. Let {Si||1 ≤ i ≤ m} be the saliency maps generated by
different saliency detection algorithms on a given image I, whose saliency value in each
map is normalized to [0, 1], G is the corresponding ground truth. Each element Si (z) in
a saliency map denotes the saliency value at pixel z. Our goal is to aggregate these
m saliency maps into a final saliency map which can outperform each individual one.

2.1 Linear Aggregation

The simplest aggregation scheme is linear summation which is defined as below:

S ¼
Xm
i¼1

wi � Si ð1Þ

where wi is the weighting coefficient, the sum of it is equal to 1 and wi ≥ 0.
Based on this function, we can design various aggregation schemes only by varying

the weighting coefficients. The most used is average weights which is uniform and
spatial invariant, wi = 1/m. We call it AVG for short, which is verified by Borji [8] and
Le Meur [7] and can produce satisfied aggregation results.

Linear weights can also be computed by minimizing the residual between different
saliency maps and their corresponding ground truths.

W ¼ argmin G�
Xm
i¼1

wiSi

�����
�����
2

ð2Þ
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In which W is the vector of weights with m dimensions.
Here, we summarize three different methods to compute W. The first one is the

classical least-squares method (LS). However, the LS weights do not sum to one and
can be positive or negative. Thus, we can add constraints to ease the interpretation of
the computed weights. But it will also reduce the solution space. The second one is to
make the weights have to sum to one, which moves the LS problem onto the Locally
Linear Embedding (LLE) [18]. The final one is to make the weights not only to sum to
one but also to be positive, which is similar to the problem of Non-negative Matrix
Factorization (NMF) [19].

Then, the only problem is how to produce a reference map Sp to instead of the
ground truth G. Here, we simply compute it by linear summation of input saliency
maps.

Sp ¼ 1
m

Xm
i¼1

Si ð3Þ

2.2 Nonlinear Aggregation

A nonlinear combination is also tested by Le Meur [7] which is defined as:

SMED zð Þ ¼ median S1 zð Þ; � � �; Si zð Þ; � � �; Sm zð Þf g;m� 3 ð4Þ

Max and min can also be applied in the above function. However, they are significantly
worse than the median weight (MED) in our experiment. Thus, they are not selected for
comparison.

2.3 Bayes Aggregation

In [8], various saliency models are combined by a Naive Bayesian evidence accu-
mulation. It is simplified to a multiplication case for simplicity, where the posterior
probability is replaced by the saliency value of different saliency model at each pixel.
However, its performance is very poor. While in [6], Bayes aggregation is proposed for
two saliency maps. In this paper, we improve it to fit the case of multiple saliency
maps.

Given m saliency maps, we select Sp as the prior and use each individual one Si to
compute the likelihood. Then, Sp is thresholded to obtain its background and fore-
ground regions described by Bp and Fp respectively. In each region, likelihoods are
computed by comparing Si and Sp in terms of the background and foreground bins at
pixel z:

P Si zð ÞjBp
� � ¼ NbBp Si zð Þð Þ

NBp

;P Si zð ÞjFp
� � ¼ NbFp Si zð Þð Þ

NFp

ð5Þ
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where NBp denotes the number of pixels in the background region and NbBp Si zð Þð Þ is the

number of pixels whose saliency value fall into the background bin bBp Si zð Þð Þ, while NFp

and NbFp Si zð Þð Þ are denoted for foreground region.

Consequently, the posterior probability is computed as below:

P FpjSi zð Þ� � ¼ Sp zð ÞP Si zð ÞjFp
� �

Sp zð ÞP Si zð ÞjFp
� �þ 1� Sp zð Þ� �

P Si zð ÞjBp
� � ð6Þ

Then, combined saliency map can be generated by the summation of these posterior
probabilities:

SBayes zð Þ ¼ 1
m

Xm
i¼1

P FpjSi zð Þ� � ð7Þ

To improve performance, double thresholds are used for the binaryzation of Sp. The
detail is described in Sect. 3.3. Thus, we can get two aggregated saliency maps which
are used to produce the final Bayes aggregation result.

In our experiment, we find that the Bayes aggregation outperforms most of the
aggregation methods and each individual saliency model in mean absolute error
(MAE) score with a large margin. Based on this observation, we introduce it into the
input saliency maps to further improve performance. Then we have m + 1 input
saliency maps in total, which are used for linear and nonlinear aggregation mentioned
above. While for nonlinear aggregation (MED), Bayes result is only introduced when
the number of the input saliency maps is even. Therefore, the new reference map S’p is
replaced by

S0p ¼
1

mþ 1
SBayes þ

Xm
i¼1

Si

 !
ð8Þ

3 Performance Evaluation

In our study, top five state-of-the-art salient object detection methods are selected for
aggregation as reported in [17], including DSR [6], MR [10], MC [11], RBD [13],
DRFI [25], whose codes or results can be acquired from the authors’ personal websites.
There are six aggregation schemes tested which are denoted as: AVG, MED, LS, NMF,
LLE, and Bayes.

3.1 Datasets

For fair comparison, it is necessary to test over different datasets so as to draw objective
conclusions. To this end, four widely used benchmark datasets are selected including:
ASD [9], SOD [24], ECSSD [15], and DUT-OMRON [10].
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ASD includes 1000 images selected from the MSRA database. Most images in it
have only one salient object and there are usually strong contrast between objects and
backgrounds. SOD is based on the Berkeley segmentation dataset. ECSSD consists of a
large number of semantically meaningful but structurally complex natural images.
DUT-OMRON contains 5,172 carefully labeled images.

3.2 Evaluation Measures

Precision-Recall (PR) curve and MAE are evaluated in our experiments. PR curve:
Given corresponding masks, the precision and recall rate are defined as bellows:

Precision ¼ M\Gj j
Mj j ;Recall ¼ M\Gj j

Gj j ð9Þ

where M is the binary object mask generated by thresholding corresponding saliency
map and G is the corresponding ground truth. A fixed threshold changing from 0 to 255
is used for thresholding. On each threshold, a pair of precision/recall scores are
computed, and are finally combined to form a PR curve to describe the performance at
different situations.

MAE: PR curve does not consider the true negative saliency assignments. For a
more comprehensive comparison, MAE is further introduced to evaluate the perfor-
mance between the saliency map S and the ground truth G, which is defined as:

MAE ¼ 1
W � H

XW
i¼1

XH
j¼1

S i; jð Þ � G i; jð Þj j ð10Þ

where W and H are the width and the height of the saliency map, respectively.
Lower MAE value indicates better performance. This measure is also found comple-
mentary to PR curves [13, 22]. As described in [17], we draw our conclusions mainly
based on PR curves, and also report MAE scores for comprehensive comparisons and
for facilitating specific application requirements.

3.3 Quantitative Comparison

Validation of Double Thresholds. In our study, the high threshold TH is generated by
Otsu and the low one TL is set to 0.5TH. The results are shown in Fig. 2. Note that
scales are different for different figures to improve the clarity of the plot, similarly
hereinafter. We can see that our double thresholds can effectively improve the per-
formance of Bayes aggregation.

Influence of Sp. In this comparison, we try to find out that whether different Sp can
influence the performance of saliency aggregation. Three different reference maps are
tested, which are Sp, S’p, and G. The results are shown in Fig. 3, in which top two
saliency models are used for average in each dataset. Using G as the reference map is as
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expected to outperform the others with large margins in PR curves. Their MAE scores
are almost the same. Thus, we should try to make the reference map as accurate as G,
which is our future work.

With or Without Bayes Aggregation as Input. In this comparison, we try to find out
that whether introducing Bayes aggregation result into the input saliency maps can
improve performance or not. As can be seen from Fig. 4, their performance is sig-
nificantly improved by combining Bayes aggregation result into the input saliency
maps except AVG aggregation which has almost no change in terms of PR curve.
While for MAE score, it can be improved with big margins in all the datasets.

AVG Aggregation of Top Two or More. We first examine whether considering more
saliency maps decreases the performance or not. We choose AVG aggregation for
comparison. Figure 5 shows all of the saliency aggregation methods by AVG signif-
icantly outperform each individual one. However, it is hard to say which one is better
between AVG aggregation of top two and more. Their performances are almost the
same both in PR curve and MAE score. Thus, we only select the top two for aggre-
gation in the other comparisons for efficiency.

Aggregation Performance Comparison. Finally, we try to find out which aggregation
method performs best, which is the main purpose in our study. Here, we compare six
aggregation methods mentioned above using top two individual models for each
dataset. As can be seen in Fig. 6, in terms of PR curve, AVG performances best in ASD
dataset, while in the other datasets, AVG and NMF achieve almost the same
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Fig. 2. PR curves (left) and MAE (right) results of double thresholds in Bayes aggregation.
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Fig. 5. Comparison of AVG aggregation with different input numbers.
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Fig. 6. Comparison of various aggregation methods on different datasets.
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performance. With respect to the MAE score, NMF and our improved Bayes outper-
form all the others on all datasets. In addition, our improved Bayes also achieve close
performance to them in PR curve. Some representative aggregation results are shown
in Fig. 7.

4 Conclusions and Future Work

In this paper, we make a comparison of different saliency aggregation methods and also
propose an improved Bayes aggregation approach. By detailed experiments and
analysis, we can draw the following conclusions: (1) It is hard to say which one is
better between AVG aggregation of top two and more. Thus, AVG aggregation of top
two is the best choice for efficiency. (2) AVG and NMF usually get best performance in
PR curve, and NMF and Bayes outperform the others in MAE score. In addition, Bayes
is very close to AVG and NMF in PR curve. Lower MAE means that the saliency value
is very close to the ground truth. Thus, our improved Bayes aggregation is a good
choice for object segmentation task. (3) Introducing Bayes result into the input saliency
maps for the other aggregations can significantly improve their performance. Double
thresholds can further improve the performance of Bayes aggregation.

Image GT AVG MED LS NMF LLE Bayes

Fig. 7. Saliency aggregation examples.
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The key problem of saliency aggregation mentioned in this paper is how to generate
the reference map Sp. Here, we only simply generate it by linear summation of all input
saliency maps. In the future, we will try to improve it by using good object segmen-
tation methods, such as SaliencyCut [3]. It will also be required to make a more
comprehensive study with more saliency methods on more benchmark datasets.
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