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a b s t r a c t

Salient object detection is still very challenging especially in images with complex or cluttered back-
ground. In this paper, we present an efficient and discriminative framework to address it. In specially, a
discriminative similarity metric is first proposed by measuring the chi-square distance in a new con-
structed feature space. Then, we apply it to calculate a background based coarse saliency map by in-
troducing distribution prior to remove foreground noises in the image boundaries. Based on manifold
ranking, a robust saliency propagation mechanism is further developed to highlight salient object and
simultaneously suppress background region by setting appropriate sink points. Finally, several simple
refinement techniques are utilized to generate pixel-wise and smooth saliency maps. Extensive ex-
perimental results show the superior performance of the proposed method in terms of different eva-
luation metrics. In addition, the proposed framework can be also applied to the existing saliency pro-
pagation methods for significant performance boosting. We also believe that it is a good choice for
subsequent applications based on the achieved high performance and acceptable computational over-
head.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Quickly prioritizing external visual stimuli and localizing most
interest in a scene is an astonishing capability of humans [1]. It is
called visual attention that has become a very active topic in both
neuroscience and computer vision. Its research mainly contains
three aspects [2]: eye fixation prediction [3], saliency detection [4],
and objectness estimation [5]. In this paper, we focus on saliency
detection which aims to make certain objects or regions of an
image stand out from their neighbors and catch immediate at-
tention. It is still challenging to develop efficient saliency detection
algorithms which can make great helpfulness to a wide range of
computer vision tasks, such as object recognition [6], image re-
targeting [7], visual tracking [8], image compression [9] and so on.

The development of saliency detection can be roughly divided
into two stages. The first stage can be summarized as low-level cue
based saliency detection, which tries to exploit effective cues, such
as contrast, and spatial distance. One of the most adopt principles,
backgroundness prior, is to take the contrast versus a narrow
border of the image (i.e. pseudo-background) as a region's saliency
[10–14,47]. However, it will be imprecise and directly lead to un-
desirable results when the object is adjacent to one or more image
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boundaries. To improve it, Wang et al. [30] remove the superpixels
with large edge feature calculated by the average probability of
boundary value, which are regarded as the foreground noises. Li
et al. [20] treat the top 30% pixels with high color difference em-
pirically among boundaries as foreground noise. While Li et al. [24]
drop the most distinctive boundary and keep the remaining three
as background seeds. Nevertheless, it is still unreliable and not
robust enough if only calculating distinctiveness among image
boundaries. Contrast prior is another widely used principle by
measuring the local or global contrast difference between the
object region with respect to other regions in an image to compute
saliency [4,11,15–17]. Spatial distribution prior [18], focusness
prior [1,19] and objectness prior [1,20] have been also exploited to
facilitate the detection of salient objects. All of them perform well
in easy cases, but still struggle in complex scenes as shown in Fig. 1
(a), which is mainly caused by the powerless similarity metric,
such as the Euclidean distance in CIELab color space.

The second stage we call propagation based saliency detection,
which applies some optimization techniques to improve the visual
quality of such coarse saliency maps. In detail, an input image is
first represented by a graph with segmented superpixels as nodes
which are connected by weighted edges. Then, saliency values are
conducted by different propagation models diffused along these
edges from labeled superpixels to unlabeled neighbors, such as
random walks [14,22], manifold ranking [12]. Recently, we have
witnessed a blossom of saliency propagation based methods
which achieved state-of-the-art performance. Sun et al. [23] rank
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Fig. 1. Saliency detection in challenging images. The first two rows are low-level cues based methods, from left to right: input image, ground truth, SF [15], GS [10], RC [39],
UFO [1], and our method; the last two rows are propagation based methods, from left to right: input image, ground truth, MC [14], MR [12], RBD [41], BSCA [31], and our
method.
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the similarities of all image elements with the foreground cues
generated by the Markov absorption probability on a 2-ring graph
model. Li et al. [20] propose an inner and an inter label propaga-
tion method combining with a co-transduction framework for
saliency detection. In [31], a cellular automata based propagation
mechanism is proposed to exploit the intrinsic relevance of similar
superpixels by interacting with neighbors. To get pixel-wised
saliency map, Li et al. [24] develop a regularized random walks
ranking model to optimize the prior maps. Inspired by the theory
of educational psychology, Gong et al. [25] present a novel pro-
pagation approach whose main idea is to postpone the propaga-
tion of difficult regions and meanwhile advance the less ambig-
uous simple regions. While Tong et al. [45] treat it as a classifica-
tion problem and propose a bootstrap learning method to exploit
multiple features for saliency detection. However, they may cause
errors when the foreground seeds are not accurate enough. In
other words, some background regions will also be diffused if they
are falsely selected as foreground seeds, thus leading to inaccurate
detection results. Although several seed selection mechanisms
have been proposed in the literature [21,30], they are not accurate
enough or time consuming. Furthermore, these propagation
methods still can not highlight salient objects uniformly and
suppress background regions well simultaneously in challenging
images, especially when the background is very similar to the
object, as can be seen in Fig. 1(b).

In a word, saliency propagation is an effective solution to get
high quality saliency maps and also one of the main research di-
rections in saliency detection recently. However, it is still not sa-
tisfactory enough especially in images with complex or cluttered
background. In this paper, we present a discriminative saliency
propagation (DSP) framework to overcome the drawbacks men-
tioned above. It can be also applied to other saliency propagation
models for significant improvement. First, an integrated feature
space is constructed by combing three color spaces (CIELab, HSV,
and opponent color space [26]) and gradient magnitude channel
for similarity measure. To the best of our knowledge, all the ex-
isting saliency propagation methods address it based on the Eu-
clidean distance in CIELab color space. However, it is powerless to
distinguish the salient regions and backgrounds with very similar
color or appearance which happens frequently in real scenes.
Second, we filter out the superpixels in the boundaries that most
unlikely belong to the background by using distribution prior (e.g.,
when objects appear at the image boundary) and thus obtain more
stable and reliable background seeds. Thus, a distribution guided
backgroundness (DGB) saliency map can be obtained by measur-
ing the difference with them for each superpixel. Third, to reduce
propagation errors, we introduce sink points into manifold rank-
ing, which are nodes whose rough saliency values are lower than a
threshold during the manifold ranking process. This way, the
ranking scores of other nodes close to the sink points (i.e., nodes
sharing similar saliency values with the sink points) will be
naturally penalized during the ranking process based on the in-
trinsic manifold. As a result, background regions will not be dif-
fused if we set appropriate sink points, and objects can be well
stood out accordingly. Iteration is not needed, thus, it is more
simple and efficient. Finally, the sigmoid function and fast bilateral
filter [43] are used to produce smooth and pixel-wise saliency
maps, and a new two-level fusion approach is proposed for further
improvement, which is a combination of saliency maps using two
different superpixel segmentation methods to capture their com-
plementary characteristic.

In a nutshell, the main contributions of this work include:
1) We propose an efficient and robust background based weak

saliency model by integrating distribution prior and a new dis-
criminative similarity metric, which are used to get desirable re-
sults even when the salient object is connected to one or more
image boundaries and handle images with complex or cluttered
background respectively.

2) Different with the seed selection methods, we develop a
novel saliency propagation framework by introducing sink points
into manifold ranking to reduce propagation errors especially in
background regions. Less background regions will be falsely de-
tected as salient objects when comparing with the existing pro-
pagation based approaches. It can be also applied to improve all
the propagation based methods to a similar performance level.

3) Several refinement techniques are further proposed for su-
perpixel based saliency detection, which can uniformly highlight
the salient objects and generate smooth saliency maps.
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By using the Precision-Recall (PR) curve, F-measure, Mean
Absolute Error (MAE) and Area Under ROC Curve (AUC) as the
evaluation criterions, we compare our approach with fifteen state-
of-the-arts on five benchmark datasets. The experiment results
show the impressive performance of the proposed method against
all the other methods. Note that it is also comparable with su-
pervised deep learning based method [27] both in quantitative
and qualitative comparison. Furthermore, we achieve it with ac-
ceptable computational overhead (about 0.47 seconds per image)
which makes it a good choice for subsequent applications. The
remainder of the paper is organized as follows. Section 2 in-
troduces the proposed saliency detection framework, including
coarse map generation, saliency propagation, and refinements.
Section 3 shows the comparison results with other algorithms and
analysis of them. Finally, conclusions are drawn in Section 4.
2. Proposed algorithm

In this section, we detail our effective and robust saliency de-
tection framework. At first, an input image is segmented into a
fixed number of superpixels by efficient segmentation algorithm.
Then, we construct our feature space by combining multiple color
spaces and gradient magnitude for superpixel description, which
can be applied both in coarse map generation and saliency pro-
pagation to distinguish very similar regions. After that, the back-
ground based weak saliency map is calculated by using distribu-
tion prior to remove foreground noises in the image borders. The
obtained coarse map is further optimized by our propagation al-
gorithm with sink points. Finally, we refine the generated saliency
map by the sigmoid function and fast bilateral filter. A new two-
level fusion is further used for performance improvement. The
pipeline of the proposed algorithm is shown in Fig. 2.

2.1. Discriminative similarity metric

Similarity metric is essential for saliency detection, which is
used to measure the difference between background and fore-
ground region. Many discriminative unsupervised [11,34] and su-
pervised [35] similarity metrics have been explored for saliency
detection. To the best of our knowledge, all the existing methods
simply use the Euclidean distance in CIELab color space as simi-
larity measure in the affinity matrix construction of saliency pro-
pagation. However, it is not discriminative enough to separate
Input image

Superpixels Backgroun
saliency

DGB

DGB

Fig. 2. Pipeline of the proposed saliency detection method. The input image is first se
saliency maps by selecting appropriate background superpixels in the image boundari
criminative saliency propagation. Finally, we combine them together as its final salienc
quality.
background and foreground regions successfully, especial in
complex images.

Different with [36], in which two color features are combined
into saliency propagation by joint label inference, we directly
concatenate multiple color histogram features to a discriminative
feature vector. CIELab and HSV are the most used color spaces in
previous works and their effectiveness have been demonstrated in
[11]. In this paper, we further introduce opponent color space [26]
whose three component channels are: black versus white obtained
by (RþGþB)/3, red versus green obtained by R–G, and blue versus
yellow obtained by B�(RþG)/2, where R, G, and B denote red,
green, and blue channel in RGB color space respectively. Then, a
concatenated histogram feature can be obtained in such three
color spaces, which will be used in the following initial saliency
map estimation and saliency propagation.

Nevertheless, it still may be struggle in complex images,
especially when the background and foreground have very similar
color. Fortunately, they usually have different texture structure
which is measured by local binary pattern feature in most of the
previous works [11,44,45]. Here, we simply use gradient magni-
tude for efficiency. By applying Gaussian filter with different
window sizes (5�5, 9�9, and 15�15) and sigma values (1, 3, 5)
to the gradient magnitude map, we can get a rough saliency map
by adding them together. From Fig. 3, we can see that either
background or foreground can be successfully highlighted when
they have different texture structure. By concatenating it with the
above color channels, we can get the final feature for superpixel
description. Table 1 summarizes the features that we have used. In
short, our superpixel feature vector consists of 256�3þ64¼832
dimensions. Finally, the similarity can be simply measured in the
obtained feature space by the chi-square distance which is more
discriminative than the previous Euclidean distance measure.

2.2. Distribution guided backgroundness

Backgroundness is a very effective cue and has been widely
used in saliency detection, which assumes the image borders as
prior background regions. However, it will lead to negative effects
on saliency detection as mentioned above. Then, some works try
to solve it by calculating distinctiveness only among image
boundaries. Unfortunately, it will lose its effectiveness when the
background is complex. In such case, some background regions
may be distinctive and then be removed as foreground noise. Here,
we solve it by using distribution prior of the whole image which is
d based
map

Optimized
saliency map

Refined
saliency map

DSP

DSP

Refinement

gmented into superpixels by two different approaches. Then we compute coarse
es for each of them. Such coarse saliency maps are further optimized by our dis-
y map, and some refinement techniques are further applied to improve its visual



Fig. 3. Input images (left) and their corresponding gradient maps (right).

Table 1
Features for each superpixel.

Feature descriptions Dimensions

The CIELab color histogram 256
The HSV color histogram 256
The opponent color histogram 256
The gradient histogram in CIELab 64
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measured by spatial variance. Superpixels with low variance
indicate more salient than spatially widely distributed ones [15]. In
detail, it is defined as below:
Fig. 4. The effect of our foreground noise removal in Section 2.2: (a) input image,
(f) background based saliency map using (b) and (e) respectively, (d) distribution based
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where hij is the chi-square distance between two histograms of
superpixel i and j in our constructed feature space, pj is the posi-
tion of superpixel j, Zi is the normalization term, μi defines the
weighted mean position of superpixel i, and N is the number of
superpixels. The parameter sd controls the color sensitivity of the
(b) and (e) background seeds (the black regions along image borders), (c) and
saliency map.
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element distribution, which is set to 1 in this paper.
Based on the distribution prior, we can simply remove fore-

ground noises in the image border regions by setting different
thresholds for different border sides since their different prob-
abilities of connecting with salient objects. In specific, superpixels
are dropped from the background sets if their distribution based
saliency values are larger than a threshold which is adaptively
derived by Otsu [37] for bottom side and its twice for the other
sides for simplicity. Then, the remaining superpixels in the image
borders are selected as background set denoted as BG, which is
stable and reliable as can be seen in Fig. 4.

Then, the background based saliency map can be measured by
calculating the contrast versus the obtained background seeds.
However, superpixels in the background seeds may be distinctive
with each other if the input image is complex. In other words, a
superpixel in the background will only be similar to some part of it
rather than all of the superpixels in the background seeds, while a
superpixel in foreground will be dissimilar to all of the background
seeds. Thus, it is not a good choice to sum up all the differences
between a superpixel and the background seeds to measure its
saliency value. In previous works, saliency is measured alone in
each image border [12] or three background parts obtained by
K-means clustering [31]. In this work, we simply sum up the
minimum L differences to measure the background based saliency,
which is defined as:

∑= ˜ =
( )=

B h i N, 1, ... ,
3

i
l

L

il
1

where h̃il denotes the ascending sorted distance between super-
pixel i and superpixel l belonging to the background set. Here, L is
adaptively set as BG /10, where BG is the cardinality of BG. After
that, the coarse saliency map of our DGB can be obtained by
normalizing B to [0, 1].

2.3. Saliency propagation with sink points

The coarse saliency maps generated by the proposed DGB need
to be further optimized by saliency propagation whose task is to
reliably and accurately transmit saliency values from the labeled
superpixels to the remaining unlabeled ones. All the propagation
approaches have a similar form as * =f As, where A is a propa-
gation matrix, f and s denote saliency values and foreground seeds
respectively. Some works [28] focus on constructing discriminative
propagation matrixes, while some others [21] try to learn optimal
foreground seeds. Different with them, we improve it in a novel
way by introducing sink points into manifold ranking to reduce
propagation errors.

Given an input image segmented into N superpixels, the
neighborhood of each superpixel is defined as prior works [12,31],
which include superpixels neighboring it as well as sharing com-
mon boundary with its adjacent superpixels. In addition, those
superpixels belonging to the BG are also considered as connecting
with each other. The similarity of two superpixels is also measured
by the chi-square distance in the above constructed feature space,
which is defined as:
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where NB(i) is the set of neighbors of superpixel i, and λ is a
parameter to control the strength of similarity. We adaptively set

( )( )λ = ⋅ − h8 1 mean in the experiments. It can be explained by the
fact that high average value of h indicates large salient object,
which we should set rather loose strength. Then, we can get a
weight matrix W¼[wij]N�N and a normalized degree matrix
D¼diag{d1,…,dN}, where = ∑d wi j ij. Based on this, a graph
structure G¼(V, E) with nodes V and edges E can be established,
where V corresponds to the coarse saliency values s¼[B1,…,BN]
and E is weighted by W. Let f: →s RN be the ranking function
assigning rank values f¼[f1,…,fN]T to each input Bi. It is noted that
we directly use the rough saliency value of each superpixel to
replace the binary queries in the original manifold ranking [12]
which will introduce errors in the binarization.

Based on the above definitions, we introduce the concept of
sink points into the data manifold to derive the propagation ma-
trix A. The sink points we defined here are the points which will
never spread any ranking score to their neighbors during the
ranking process. It can be intuitively imagined as “black holes”
where ranking scores spreading to them will be absorbed and no
ranking scores would escape from them [33]. Let If¼diag{δ1,…,
δN}, where δi¼0 if superpixel i is a sink point and 1 otherwise, the
cost function associated with the ranking score vector f can be
formulated as:
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The optimal solution of f then can be obtained by setting the
derivative of the above function to be zero, which can be written
as:
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Hence, they have the same eigenvalues. Then, we rewrite Eq.
(6) as:

( )α* = − ( )− −f I D WI s 7f
1 1

Similar as [12], we get another ranking function by using the
unnormalized Laplacian matrix in Eq. (7) which has been de-
monstrated to achieve better performance [12]:

( )α* = − ( )
−f D WI s 8f

1

Thus, the propagation matrix A is equal to ( )α− −D WIf
1. In

addition, to reduce the influence of self-similarity of the super-
pixels in the process of propagation, we set the diagonal elements
of A to 0 as [12] does. Finally, saliency can be measured by the
normalized ranking score using the foreground seeds given by the
coarse saliency map, which can be written as:

( ) ( )= ¯* =S i f i i N, 1, 2, ... , .
As the salient object usually lies near the center of an image,

known as center prior which has been widely applied for salient
object detection. In this work, center weight is used for setting
sink points, which is defined as:
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where p̄i x, and p̄i y, are the normalized coordinates of superpixel i,
sx and sy are set to one third of the image width and height re-
spectively. Then we have a center-weighted coarse saliency map
SCB¼[c1B1,…,cNBN], and simply set these superpixels as sink points
if their saliency values are less than or equal to a threshold Ta



Fig. 5. Illustration of the proposed sink points: (a) input image, (b) ground truth, (c) coarse saliency map, (d) saliency propagation result of our method, (e) and (g) coarse
saliency map with sink points in red, (f) and (h) saliency propagation result using sink points in (e) and (g) respectively.
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which is simply set to 0 in this paper.
The effectiveness of the proposed sink points is illustrated in

Fig. 5. From Fig. 5(e) and (f), we can see that the umbrella region
will be suppressed after propagation if we set a sink point in it. It is
the same in the body and boat regions as can be seen in Fig. 5
(g) and (h). Thus, we can suppress background regions in the
process of propagation though setting appropriate sink points.

2.4. Saliency refinements

Multi-level segmentation can be further applied to improve
performance such as [11,13,16,45] do. Different with them, we try
to integrate different segmentation algorithms with com-
plementary characteristic to increase the robustness to scale var-
iation. SLIC [32] is a widely used superpixel segmentation method
which can generate superpixels with similar sizes. While we can
obtain superpixels with varying sizes by another efficient graph-
based segmentation [29] approach. For example, a smooth area
will be segmented into different superpixels by SLIC while treated
as one region by graph-based segmentation as can be seen in
Fig. 2. Thus, we can use them to produce two complementary
saliency maps for each image, and the final saliency output is
simply generated by averaging them. Obviously, our two-level
fusion refinement can be also applied to the existing superpixel
based methods to obtain further improvement.

After saliency propagation, some foreground regions may still
have not been fully highlighted, or some backgrounds have not
been deeply suppressed. To further resolve this problem, we first
construct a sigmoid function to refine the saliency maps, which is
defined as:
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where Tb is a threshold to segment S and is also computed by Otsu
[37] in this paper. Then, we integrate it with S by linear summation
to improve the visual quality. Finally, we smooth the integrated
saliency map to produce pixel-wise result by the fast bilateral filter
[43] which is an efficient edge-preserving smoothing operator and
performs better than the guided filter used in [23].
3. Experimental results

We evaluate our method on five typical benchmark datasets:
MSRA-10k [39], ECSSD [16], SOD [40], PASCAL-S [42], and DUT-
OMRON [12]. MSRA-10k is a descendant of the MSRA dataset and
contains 10,000 annotated images. ECSSD contains 1000 images,
most of which are semantically meaningful and structurally
complex. SOD consists of 300 images collected from the Berkeley
segmentation dataset and most of which have multiple salient
objects either with low contrast or overlapping with the image
boundary. PASCAL-S is arguably one of the most challenging sal-
iency dataset which is ascended from the validation set of PASCAL
VOC 2010 segmentation challenge and contains 850 images with
complex background. It is also believed to eliminate the design
bias, e.g., center bias and color contrast bias. The last DUT-OMRON
is another challenging dataset that contains 5168 images with
complex background.

We compare the proposed method with fifteen newest state-
of-the-art methods including GS [10], DRFI [11], MR [12], DSR [13],
MC [14], SF [15], LPS [20], RRWR [24], TLLT [25], LEGS [27], BSCA
[31], MCA [31], RC [39], RBD [41], and BL [45]. Note the extended
version of RC and multi-level DRFI are used in our comparison, and
MCA is integrated by HS [16], DSR [13], MR [12], RBD [41], and
BSCA [31] as described in [31]. The results of the above methods
are achieved by running the source codes or provided by authors,
which can guarantee a fair comparison.

3.1. Parameters and evaluation metrics

3.1.1. Experimental setup
Superpixel number N is adaptively set as height�width/300

for all the superpixel based approaches using SLIC, s¼0.8, and
k¼100 for graph-based segmentation, μ¼0.01, all the parameters
are unchanged in the following experiments.
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Fig. 6. PR curve results: (a) is the comparison of each individual component, (b) shows improvement of existing saliency propagation approaches by the proposed similarity
matrix or sink points (*sp), (c) shows improvement of state-of-the-art methods by our saliency propagation algorithm. Note that * indicates the improved version.
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3.1.2. Evaluation metrics
We evaluate the performance of all the methods using PR

curve, F-measure, AUC score, and MAE. Similar as prior works, the
PR curves are computed by comparing the ground truth with
binary maps obtained by binarizing the saliency map using
thresholds in the range of 0 and 255. The F-measure is an overall
performance measurement which is defined as:

( )β
β

=
+ ⋅ ⋅
⋅ + ( )βF

Precision Recall

Precision Recall

1

12

2

2

where Precision and Recall are computed by an adaptive threshold
which is twice the mean saliency value of the input image, and β2

is set to 0.3 to emphasize the precision [38]. The AUC represents
the area under the receiver operating characteristics curve and can
effectively reflect the global properties of different methods.
Higher score indicates better performance, and around 0.5 will be
obtained by random guessing [46]. Thus, we show it by AUC –

0.5 in our experiment for the clarity of the figures. The MAE is the
average difference between the saliency map and the ground truth
in pixel level, which indicates the similarity of them and is com-
plementary to PR curves.

3.2. Quantitative results

3.2.1. Individual component analysis
In order to evaluate the contributions of separate components in

our approach, we only show evaluation results of PR curves in Fig. 6
(a) due to limited space. We can observe that performance of our
method can be improved by introducing gradient magnitude
channel and sink points on the challenging SOD dataset. In specific,
Table 2
Comparison of average running time (seconds per image) on ECSSD. {M¼MATLAB,
C¼C/Cþþ}.

Method Code Time(s)

MC MþC 0.12
MR M 0.58
RBD MþC 0.27
LPS MþC 2.56
RRWR M 1.23
BSCA MþC 1.01
DRFIs MþC 1.81
DRFI MþC 7.14
DSPs MþC 0.47
DSP MþC 0.69
1.59% and 0.89% improvement can be obtained in terms of F-mea-
sure respectively. We analyze that SOD contains many complex
natural images and most of them have different texture structures
which can be well captured by the gradient statistic. With the help
of two-level fusion enhancement, we further improve the perfor-
mance while still keep the efficiency as shown in Table 2. For in-
stance, it improves by 1.74% on SOD and 1.18% on MSRA-10k in
terms of F-measure as can be seen in Fig. 7(e). After refinement, our
method lowers the MAE by 2.35% on SOD which indicates the good
similarity between the predicted saliency map and the ground
truth. Thus, all the individual components make their contributions
independently to the final performance improvement.

3.2.2. Comparison with state-of-the-arts
Quantitative comparison results of different saliency propaga-

tion methods are shown in Fig. 7, including RBD [41], LPS [20], TLLT
[25], BSCA [31], BL [45], and RRWR [24], most of them are published
very recently. Additionally, we also report the performance of DRFI
[11], MCA [31], and LEGS [27] for comparison. Note that the results
of some methods are not reported on some datasets because they
are not provided by authors. As can be seen, the proposed DSP
significantly outperforms the other saliency propagation methods
throughout all the evaluation metrics and datasets, which indicates
the superior overall performance of the proposed approach. Take
the challenging PASCAL-S dataset for example, it improves by 2.97%,
4.14%, and 4.46% over the second best method according to the
precision, recall, and F-measure values, respectively. Besides, some
methods tend to detect accurate salient objects at the expense of
low recall, such as TLLT on ECSSD and LPS on SOD, which cause the
imbalance between precision and recall. Comparatively, our DSP
produces more balanced results, thus, best F-measure is obtained
on all the tested datasets. Furthermore, we observe that the pro-
posed DSP has a competitive high precision value in the high range
of recall, which indicates the strong capability to suppress the
background regions contributed by the appropriate sink points. It is
also noted that the proposed method is not only better than MCA
which is an aggregation model, but also slightly better than the
multi-level segmentation based DRFI which achieves top perfor-
mance in a recent benchmark of saliency detection [46]. More
surprisingly, it also gets similar performance with the deep learning
based LEGS and even achieves higher AUC score as seen from Fig. 7
(a)–(b). In addition, it is interesting to find that almost all the
methods get extremely larger recall values comparing with preci-
sion on the DUT-OMRON dataset, which might be caused by its
noisy labeling as described in [46].



Fig. 7. Quantitative comparison results of different saliency propagation methods on different datasets. From left to right: PR curves, F-measure, MAE and AUC values. DSPs
indicates the single level version of the proposed method.
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Fig. 8. Visual comparison of the saliency maps. The last two rows are failure cases where DSP powerlessly or abundantly detects the salient objects.
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3.2.3. Improvement of the-state-of-arts
The proposed similarity matrix W combining multiple color

spaces and gradient channel can be used to enhance the existing
saliency propagation methods (including MR [12], MC [14], LPS
[20], and SCA [31]) to a similar performance level. For fair com-
parison, we use our DGB as the input coarse saliency map for MR
and SCA. PR curves are shown in Fig. 6(b), which strongly proves
the effectiveness of the proposed similarity metric which can
greatly improve their performance by a large margin. We further
introduce our sink points to the recent proposed SCA by replacing
its impact factor matrix with D�1WIf to evaluate its generality. As
can be seen from Fig. 6(b), the performance can be further en-
hanced which demonstrates the robustness of the proposed sink
points. We also apply our saliency propagation to optimize state-
of-the-art results which are used as the input coarse saliency
maps, including RC [39], GS [10], SF [15], DSR [13], and DRFI [11].
From the results in Fig. 6(c), we can see that all of them are sig-
nificantly improved to a similar level after our saliency propaga-
tion even though the input saliency maps are not satisfying.

3.3. Qualitative results

We further show some qualitative comparison results of dif-
ferent approaches in Fig. 8. As can be seen, the salient objects are
fully highlighted by our method thus very similar to the ground
truth, which indicates lower MAE value as mentioned above. Be-
sides, we can observe that the proposed method can deal well
with the challenging cases where the background is complex or
very similar to the foreground. For example, in the 3rd, 6th, and
8th rows, all the other approaches are not discriminative enough
to distinguish the background and foreground regions with very
close color while our method can separate them successfully. We
also find that our approach shows better capability in background
suppression contributed by the proposed sink points. As shown in
the images at 4th, 5th, and 7th rows in Fig. 8, background regions
are well eliminated while salient objects are completely retained
simultaneously by our method. In addition, our method produces
smoother saliency map with more uniformly highlighted objects
and well defined boundaries comparing with others due to the
contribution of our refinements, e.g., the bus in the first row and
the watermelon in the second row can be fully highlighted by our
approach, and the people in the 9th row are more smooth than the
others. It is also worth pointing out that the proposed method can
perform well when the salient object is connected with the image
boundary as seen in the 6th and 10th rows in Fig. 8, which de-
monstrates the effectiveness of the proposed DGB.

3.4. Running time

The running time test is carried out in a 64-bit PC equipped of
an i7-4790 k 4.00 GHz CPU and 16 GB RAM. All the tested codes
are provided by the authors and run unchanged in MATLAB
R2015a with some Cþþ mex implementations (superpixel seg-
mentation and distance measure), and only single thread is uti-
lized. The average running time per image of different approaches
on the ECSSD dataset are listed in Table 2. As can be seen, both of
our single-level and two-level algorithms are much more efficient
than the listed saliency propagation methods. Note that our single-
level version is also faster than MR, which is contributed by our
efficient DGB. Although it is slower than MC and RBD, better re-
sults can be obtained at the cost of acceptable computational time.
Thus, it is a reasonable trade-off between accuracy and efficiency.
3.5. Limitation and analysis

The last two rows of Fig. 8 show some failure cases where the
background and foreground is very similar or contains multiple
disconnected salient objects. The first case is caused by the small
difference between background and foreground which is in-
adequate to distinguish them by the proposed similarity metric.
However, it is also challenging for the state-of-the-arts even deep
learning based methods. The second case is due to the center prior
used in the sink points setting which will suppress some salient
object regions far away from the image center in saliency propa-
gation. Objectness measure could be a possible solution. However,
the current objectness measure methods are not accurate and ef-
ficient enough and even worse than the center prior in our ex-
periments. It would be interesting to exploit more discriminative
similarity metric or deep feature and efficient objectness measure
to further enhance the current results, which are the two direc-
tions of our future research.
4. Conclusions

In this paper, we propose a simple unsupervised bottom-up
saliency detection method in which both weak and strong saliency
models are integrated. Based on the distribution prior, foreground
noises in the image borders are significantly reduced and reliable
background seeds are obtained to produce background based
saliency map. By setting appreciate sink points in manifold rank-
ing, propagation errors are reduced especially in the background
regions. The proposed similarity metric is very discriminative for
the coarse saliency map estimation and saliency propagation even
in complex images. In addition, both of them can be applied to the
existing saliency propagation models for great performance en-
hancement. Finally, pixel-wise and smooth saliency maps are
generated simply by the sigmoid function and fast bilateral filter.
Moreover, further improvement is obtained by our new two-level
fusion combining the advantages of SLIC and graph-based seg-
mentation. Experimental results not only show the superior per-
formance of the proposed method but also a good balance be-
tween saliency detection accuracy and computational cost. Thus,
we believe that it is a good choice for subsequent or real appli-
cations, such as object detection or semantic segmentation [48].
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