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a b s t r a c t

Saliency1 based coding proposed recently have been proven to perform well in both performance and ef-

ficiency for image classification. However, we find that they are sensitive to unusual features, e.g., noisy

features, which we call poor robustness. To address this problem, we propose a novel coding scheme by

combining global saliency and local difference together, which are applied for improving stability or robust-

ness and exploring the latent structure information of the codebook respectively. Thorough experiments on

various datasets show that our coding consistently performs better than local saliency based coding, in terms

of both accuracy and computation cost. Furthermore, it is more robust to unusual features than localized

soft-assignment coding. In addition, a combination of our global saliency with local saliency based coding can

usually improve both.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

As an important and challenging problem in computer vision,

image classification has gained more and more attention in recent

years. Many good approaches for image classification have been pro-

posed in the literatures. Among them, the bag-of-words (BOW) [1]

model and its extensions (such as spatial pyramid matching [2])

achieve the state-of-the-art performance and have been widely used

in many applications. They commonly consist of the following five

steps: feature extraction, codebook generation, feature coding and

pooling, classification. Feature coding means how to express each de-

scriptor by a codebook to obtain an image-level representation, and

has significant influence on classification performance.

We group the existing coding approaches into four categories ac-

cording to their motivations, as shown in Fig. 1. Voting-based meth-

ods are the simplest coding in the literature. Hard-assignment [1]

represents a local descriptor to the closest codeword and gives one

nonzero coefficient. Without considering codeword ambiguity [3],

it always introduces large quantization error. To improve it, soft-

assignment [4] is proposed by assigning a local descriptor to all the

codewords. Reconstruction-based methods choose a group of code-
✩ This paper has been recommended for acceptance by J.K. Kämäräinen.
∗ Corresponding author. Tel.: +86 18662386487.

E-mail addresses: c.shuhan@gmail.com (S. Chen), wrs@cqu.edu.cn (W. Shi),

lvxiao87@126.com (X. Lv).
1 Saliency in this paper denotes descriptor space saliency.
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ords to reconstruct descriptors via resolving a least square opti-

ization problem with sparse or locality constraints, e.g., sparse cod-

ng [5], local coordinate coding [6], locality-constrained linear cod-

ng [7]. Compared with voting-based methods, they always achieve

etter performance. To reduce reconstruction error, Ren et al. [8]

roposed local hypersphere coding, which made reconstruction on a

ocal smooth hypersphere and obtained more distinctive represen-

ation. High dimensional methods, proposed for large-scale image

lassification, such as Fisher kernel coding [9], improved Fisher ker-

el [10], super vector coding [11], achieve impressive performance

12]. However, they require a large quantity of memory [13]. More

ecently, saliency based methods are developed, whose core idea is

hat saliency is a fundamental characteristic of feature coding in the

ramework with max-pooling [5]. They make a good compromise on

efficiency and classification performance. The original salient coding

(SaC) [14] encodes each descriptor using the closest codeword by the

saliency degree. However, this hard assignment strategy is coarse for

feature description [15]. Then, group saliency coding (GSC) [13] is

roposed to improve it, whose main idea is calculating the saliency

esponse in a group of codewords. It explores more latent structure

nformation, thus, it performs well.

As mentioned in [15], there are four characteristics we should con-

ider in designing coding method: robustness, adaptiveness, accuracy

nd independency. Among them, robustness plays the most impor-

ant role. However, saliency based coding are sensitive to unusual

eatures, e.g., noisy features, in other words, they have poor robust-

ess. In this paper, we propose a novel coding method with good
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Salient Coding

Group Salient Coding

Fisher Kernel

Super Vector Coding

Fig. 1. A taxonomy of coding methods in image classification. Several representatives

are listed for each type of coding schemes.
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Fig. 2. Illustration of saliency based coding. The blue balls are local descriptors and the

green rectangles are codewords. The red lines denote the Euclidean distance between

them in descriptor space. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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obustness, adaptiveness and independency. Specially, it is achieved

y combing global saliency and local difference together, thus, we call

t global and local saliency based coding (GLSC). It is noted that they

re applied for improving stability or robustness and exploring the la-

ent structure information of the codebook respectively. In addition,

ur global saliency is complementary to the previous local saliency

ased coding, thus, a combination can usually improve both.

The remainder of the paper is organized as follows. In Section 2,

e briefly review saliency based coding schemes in BOW model. The

roposed coding method is presented in Section 3. Section 4 provides

xperimental results on three datasets: Caltech-101, Scene-15 and

IUC-Sport. Finally, conclusions are drawn in Section 5.

. Related work

In this section, we mainly concentrate on saliency based coding

trategies, introduce their motivations and analyze their limitations.

et xi (xi ∈ R
d) be a d dimensional descriptor, such as scale-invariant

eature transform (SIFT) descriptor [16], Bd×M = (b1, b2, . . . , bM) be

codebook with M cluster centers, and ui (ui ∈ R
d) be the coding

oefficient vector of xi, e.g., uij be the response of xi on codeword bj.

Currently, the framework of using a sparse or local coding scheme

ombining with max-pooling is regarded as the state-of-the-art. Pool-

ng operation is used to obtain an image-level representation. In the

ax-pooling, only the strongest response will be preserved. Let pj be

he ith component of image representation p, then max-pooling can

e defined as:

j = max
i

uij (1)

here i = 1, 2, . . . , l, and l is the total number of local features in an

mage. A detailed analysis of feature pooling was conducted in [22],

ncluding average [1], sum [2], max pooling, we only concentrate on

ax-pooling in this paper.

In saliency based coding, a strong response on a codeword means

hat this codeword is much closer to a descriptor belonging to it

omparing with the other codewords [15]. It indicates the codeword

an represent this descriptor independently, which is measured by

aliency degree in saliency based coding. In the original salient coding,

t is defined by measuring the difference between the closest code and

ther K-1 codes. In detail, a descriptor is represented as:

ij =
⎧⎨
⎩

�(x, bj), if j = arg min
j

(‖x − bj‖2)
0, otherwise

(xi, b̃j) = 1 − ‖xi − b̃j‖2

[1/(K − 1)]
K∑

k �=j

‖xi − b̃k‖2

(2)
here � denotes the saliency degree, and is the set of K closest code-

ords to descriptor x.

Although performs well in both effectiveness and efficiency, there

till exists a limitation caused by the coarse hard assignment strategy.

nly considering the closest codeword, the representations of some

escriptors may be suppressed in the subsequent max-pooling. Take

ig. 2 for example, wherein x1, x2, x3 and b1, b2, b3 denote local de-

criptors and codewords respectively, Sij and Gij denote the response

f xi to bj in SaC and GSC respectively. As described in Fig. 2, S22 is sup-

ressed by S12 (since S22 < S12), thus, it will lose the representation

f descriptor x2.

To improve it, Wu et al. [13] proposed GSC method by introducing

roup coding. Its main idea is to compute the saliency response in a

roup of codewords with different group code sizes, and the maxi-

um of all responses is preserved in the final coding result. Let vg

enote the coding response with group code size g, then the GSC

epresentation can be described as:

ij = max {v
g
ij}, g = 1, . . . , G

g
i,j

=
{
�g(xi), if bj ∈ g (xi, g)

0, otherwise

g(xi) =
G+1−g∑

t=1

(‖xi − b̃g+t‖2 − ‖xi − b̃g‖2)

(3)

here in �g denotes group saliency degree, g(xi, g) denotes the set of

he g closest codewords of descriptor xi, and G is the maximum group

ode size.

GSC not only preserves the good properties of effectiveness and

fficiency in SaC with the help of group coding, but also performs

ore stably and robustly than SaC. Consider the example in Fig. 2

G = 2), although the response G22 is also suppressed by G12 (since

22 < G12), we can still find the representation of descriptor x2 on
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b1 (G21). However, consider the special case, if the response G21 is still

suppressed by G11 (G21 < G11), could it be about to happen again? The

answer is true, and we will discuss it in the next section.

3. The proposed method

3.1. Global saliency

Both of SaC and GSC calculate saliency response on the k closest

codewords, which indicates that they only reflect the local saliency

characteristic, thus, we call them local saliency based coding in this

work. As mentioned before, the response of the neighbor codeword

still will be suppressed in GSC. We analyze that it is caused by disre-

garding the global saliency information. We also find that preserving

more representations of various descriptors would improve the sta-

bility and robustness of coding, nor more representations of only

some salient descriptors. Specifically, we will illustrate it though the

following two cases.

ase 1: A descriptor x1 is far away from all the codewords. In this

case, any single code cannot well represent the descriptor.

However, it may produce high response on the K closest code-

words in local saliency based coding, in other words, it could

produce high local saliency response which is not stable and

robust. Table 1(a) is an example in this case.

ase 2: A descriptor x2 is close to all the codewords, especially to

these K closest codewords. In this case, all these codes should

be used to describe the descriptor. However, it may produce

weak response relative to case 1, in other words, it could pro-

duce low local saliency, thus, it may be suppressed by the

response of x1, which will cause the loss of the x2’s represen-

tation. We show an example of this case in Table 1(b).

As can be found in Table 2 that the response u21 will be suppressed

by u11 (since u21 < u11) in SaC, while in GSC, all the responses of x2

will be suppressed by x1, thus, we will lose the representation of x2

in both SaC and GSC. To solve it, we first propose a global saliency
Table 1

Two examples showing global saliency.

(a)

‖x1 − b1‖2 ‖x1 − b2‖2 ‖x1 − b3‖2 ‖x1 − b4‖2 ‖x1 − b5‖2

0.4406 0.5873 0.5918 0.6459 0.6597

u11 u12 u13 u14 u15

SaC 0.2907 0 0 0 0

GSC 0.9448 0.2113 0.1933 0.0310 0.0104

Global 0.5594 0.4127 0.4082 0.3541 0.3403

GLSC 0.7918 0.1908 0.1724 −0.0493 −0.1058

(b)

‖x2 − b1‖2 ‖x2 − b2‖2 ‖x2 − b3‖2 ‖x2 − b4‖2 ‖x2 − b5‖2

0.2368 0.2815 0.2991 0.3355 0.3395

u21 u22 u23 u24 u25

SaC 0.2457 0 0 0 0

GSC 0.4215 0.1980 0.1276 0.0184 0.0034

Global 0.7632 0.7185 0.7009 0.6645 0.6605

GLSC 0.3495 0.2411 0.1985 0.1103 0.1006

Table 2

Max-pooling results of Table 1. The italic ones denote the responses of

descriptor x2, and the others denote the responses of descriptor x1.

b1 b2 b3 b4 b5

SaC 0.2907 0 0 0 0

GSC 0.9448 0.2113 0.1933 0.0310 0.0104

GLSC 0.7918 0.2411 0.1985 0.1103 0.1006
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ased coding method. In common sense, saliency indicates the most

oticeable property, which is described as the closest codeword is

uch closer to a descriptor than the other K-1 closest codewords

n [14]. Different with [14], we extend the local saliency to global

aliency to improve its stability and robustness. In detail, it is defined

s the ratio of the difference between the closest code and all the

ther codes.

G(xi, b̃j) = �

⎛
⎜⎜⎜⎝ ‖xi − b̃j‖2

[1/(n − 1)]
n∑

k �=j

‖xi − b̃k‖2

⎞
⎟⎟⎟⎠ (4)

here � is a monotonically decreasing function which denotes the

lobal saliency degree, here, we define it as:

(a) = 1 − a (5)

Rigidly calculating the response of each descriptor on all the code-

ords nor the closest ones has been proven to degrade the classifi-

ation performance. Because it fails to capture the underlying mani-

old structure in codewords [17]. Locality constraint which has been

roven to outperform the sparse constraint is usually applied to re-

uce computation cost. Thus, we also make locality constraint on

ur global saliency, that is only computing response on the K closest

odewords:

i,j =
{
� ′

G(x, bj), if bj ∈ NK(xi)

0, otherwise
(6)

here NK(xi) denotes the set of K closest codewords to descriptor xi.

or convenience of computation, we further make an approximation

s below:

′
G(xi, b̃j) = �

⎛
⎜⎜⎜⎝ ‖xi − b̃j‖2

(1/n)
n∑

k=1

‖xi − b̃k‖2

⎞
⎟⎟⎟⎠ (7)

Consider the above two examples again, coding responses pro-

uced by our global saliency are shown in Table 1. We can find that

he response u11 is suppressed by u21 (since u11 < u21) in global

aliency coding, which is opposite to the local saliency based coding.

lthough obtained better performance than the local saliency based

oding (can be seen in Section 4), the problem mentioned above still

xists. We will solve it by introducing local difference, which will

e discussed in the following subsection. In addition, a combination

f our global saliency with previous methods lacking global saliency

nformation can usually improve both.

.2. Local difference

Research shows that local saliency is a fundamental characteristic

n feature coding, these codes with high local saliency could indepen-

ently describe the descriptors [14]. In SaC, local saliency is defined

s the ratio of the difference between the closest code and other K-1

odes, the bigger the ratio, the higher the local saliency. In GSC, local

aliency is defined as the sum of the difference between the closest

ode and other K-1 codes in a group code size, the larger the dif-

erence, the higher the local saliency. In this work, we define local

ifference to reflect local saliency, the higher the local difference, the

igher the local saliency, which is defined as:

L(xi, b̃j) =
K∑

k=1

‖xi − b̃k‖2 − K‖xi − b̃j‖2 (8)

In our local difference coding, large non-negative value reflects

igh local saliency, while small negative value reflects low local

aliency. However, negative response is meaningless, because it will
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(b)
Fig. 3. Performance of our method under different K, q.
e suppressed by zero in the subsequent max-pooling. Thus, we sim-

ly set them zero:

′
L =

{
�L, if �L > 0

0, otherwise
(9)

Finally, our local difference coding can be written as:

i,j =
{
� ′

L(x, bj), if bj ∈ NK(xi)

0, otherwise
(10)

.3. GLSC coding

We think that a salient code should both have high global and local

aliency. Therefore, we combine global saliency and local difference

ogether to reflect saliency degree. Here, we simply combine them by

inear summation, in which local difference is used to revise global

aliency. In detail, it is defined as:

= � ′
G + q�L (11)

here q is a weighted factor.

In our coding scheme, high salient coding response is only pro-

uced when with high global saliency and high local difference simul-

aneously. It is noted that the local difference with negative response

s used to revise global saliency. Our coding can perform more stably

nd robustly than local saliency based coding by considering global

aliency and local difference together. Come back to the above two

xamples, we can find that although the response u21 is suppressed

y u11 (since u21 < u11), the representation of x2 can still be found on

22, u23, u24, u25 simultaneously. Our GLSC coding not only preserves

he effectiveness and efficiency of local saliency based coding, but also

hows better stability and robustness.

. Experiments

.1. Datasets and experimental settings

The following three datasets are used for test in our experiments:

Caltech-101[18]: It contains 9144 images in 102 classes (including

a background class) including animals, vehicles, flowers, etc.,

with high intra-class appearance shape variability. The number

of images per category ranges from 31 to 800. Most of the

images are medium resolution, i.e. 300 × 300 pixels.

Scene-15 [19]: It contains 4485 images spread over 15 categories,

including outdoor and indoor scenes, e.g., mountains, forest,

living room and kitchen. There are 200–400 images per cate-

gory with average image resolution of 300 × 250 pixels.

UIUC-Sport[20]: It is a sport event dataset which contains 1792

images in eight categories including badminton, bocce, cro-

quet, polo, rock climbing, rowing, sailing and snowboarding.

The number of images varies from 137 to 250 in each category.

We choose the SaC [14], GSC [13] and localized soft-assignment

oding (LSC) [17] for comparison. Note that all of them are efficient

oding techniques, and LSC achieves top performance except IFK and

VC in state-of-the-art methods. The source code of LSC is available

n the author’s project site. For fair comparison, we integrate all the

ther methods (including our GLSC) into the LSC framework. Thus, we

an guarantee that all the configurations other than the coding part

s the same. In our experiments, only a single descriptor is used, the

IFT descriptor, which is densely extracted from images on a grid with

tep size of six pixels under one scale 16×16 pixel patches. Codebook

s generated by the standard K-means clustering algorithm. The code-

ook size and other parameters in our method will be discussed in

he next subsection. Max-pooling is used in all our experiments. SPM

ernel with three levels of 1 × 1, 2 × 2 and 4 × 4 is adopted. Lib-linear
VM is used for classification wherein the penalty coefficient is set

o 1. All experiments are repeated 10 times with different random

elected training and testing images in a PC with an Intel Core 2 Duo

PU (2.26 GHz) and 4 GB RAM, and results are shown with average

ccuracy and the standard deviation.

.2. Experimental results and analysis

Caltech-101: On this dataset, we use 30 images per class for train-

ng while leaving the rest for test. We first study the influence of K in

q. (6), (10) and q in Eq. (11) to our algorithm, and then test whether

ur global saliency is complementary to previous local saliency based

oding methods, finally, compare the classification performance of

arious coding approaches with different size of codebook. We also

ake an additional experiment to study the robustness of different

pproaches, in which random noises in different proportions per im-

ge are added to replace the original SIFT descriptors as did in [15].

Fig. 3(a) shows the performance when K = 2, 5, 10, 20, 40 with

024 codebook. From the experimental results, we can see that

� 10 leads to a good performance, while K � 20, the performance

egrades quickly. We fix K to 5 in the rest of tests. Fig. 3(b) shows the

esults when q = 0.5, 1.0, 1.5, 2.0, 2.5 with 1024 codebook on three

atasets. As seen, q = 1.5 obtains best performance except on UIUC-

port (q = 2.0) dataset. For simplicity, we set q = 1.5 in the following

xperiments. We further test the effectiveness of our global saliency,

he results are shown in Fig. 4, in which the global saliency and local

ifference are calculated by Eqs. (6) and (10) respectively. The global

aliency coding outperforms the local saliency based coding. Further-

ore, all the tested methods (SaC, GSC) perform over a wide range

fter combining our global saliency due to its complementary prop-

rty. The results of various coding strategies under different size of
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Table 3

Performance comparison of various coding strategies under different sizes of codebook.

Codebook size SaC GSC LSC GLSC

(a) Caltech-101

256 65.20 ± 0.57 66.73 ± 0.38 68.95 ± 0.84 69.13 ± 1.03

512 66.66 ± 0.46 69.87 ± 1.22 71.39 ± 1.08 71.31 ± 0.63

1024 66.21 ± 1.30 70.76 ± 0.87 72.57 ± 1.06 72.89 ± 1.06

2048 65.67 ± 0.96 71.32 ± 1.21 74.21 ± 0.72 74.02 ± 1.38

(b) Scene-15

256 76.63 ± 0.50 76.60 ± 0.52 78.08 ± 0.61 78.28 ± 0.56

512 78.15 ± 0.37 78.28 ± 0.65 80.05 ± 0.57 79.92 ± 0.78

1024 77.68 ± 0.62 79.27 ± 0.41 81.55 ± 0.35 81.62 ± 0.56

2048 78.01 ± 0.64 80.03 ± 0.75 82.30 ± 0.77 82.51 ± 0.64

(c) UIUC-Sport

256 83.64 ± 1.05 82.30 ± 1.29 83.28 ± 0.90 83.29 ± 1.01

512 84.33 ± 0.59 84.64 ± 0.72 84.61 ± 0.99 84.72 ± 1.01

1024 85.08 ± 0.72 85.79 ± 0.79 85.65 ± 0.85 86.01 ± 0.71

2048 85.51 ± 1.24 86.59 ± 0.75 86.15 ± 1.31 86.75 ± 1.27

Local Global SaC GSC
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Fig. 4. Effectiveness of our global saliency.
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Fig. 5. The influence of random noises on coding algorithms.
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codebook are shown in Table 3(a). It is obvious that our method and

LSC outperform the others a large margin. With the increase of the

codebook size, our method performs better and better. But for SaC,

the performance decreases when the codebook size becomes large.

This conclusion is the same as drawn in [13]. From Fig. 5, we can see

clearly that our coding method performs best under different noise

level, which indicates its good robustness to noises. Thus, we can say

our GLSC coding is better than LSC. It is noted that the SaC in our

implementation is slightly worse than reported in the original paper,

we analyze that it may be caused by the different engineering details,

e.g., normalization of descriptors, scale of densely grid in SIFT (only

one scale is used in our framework).
Scene-15: Following the experimental setup of Lazebnik et al. [2],

e randomly pick out 100 images from each category for training and

he remainder for testing. As illustrated in Table 3(b), our proposed

ethod and LSC still perform better than the others.

UIUC-Sport: We follow the common experimental setup as did in

17,21], and randomly selected 70 training images from each cate-

ory and test on the rest images. Table 3(c) gives the performance

omparison of the various methods. Again, our GLSC shows better

erformance than the other coding methods.

. Conclusion

In this paper, we first analyzed various coding strategies in BOW

odel, and then deeply discussed the advantages and limitations of

ocal saliency based coding. We have demonstrated that the global

aliency is an important characteristic of coding, which has not been

ully considered in the literatures. Based on this analysis, we proposed

novel and efficient coding method by combining global saliency

nd local difference together, called GLSC. The experimental results

n different databases (Caltech-101, Scene-15 and UIUC-Sport) have

hown its superiority (stability and robustness) to local saliency based

oding and also performed as well as LSC which achieves top classifi-

ation performance in state-of-the-art methods. Furthermore, com-

ared with LSC, our coding approach is more robust when dealing

ith noisy features. It is also worth noting that global saliency cod-

ng can also be cooperated with other coding strategies such as SaC

nd GSC to improve both. In future, we will further study the influ-

nce of different combination strategies of global saliency and local

ifference, and experimentally analyze on more challenging datasets.
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