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Abstract Saliency region detection plays an important
role in image pre-processing, and uniformly emphasizing
saliency region is still an intractable problem in computer
vision. In this paper, we present a data-driven salient region
detectionmethod viamulti-feature (included contrast, spatial
relationship andbackgroundprior, etc.) on absorbingMarkov
chain, which uses super pixel to extract salient regions, and
each super-pixel represents a node. In detail, we first con-
struct function to calculate absorption probability of each
node on absorbing Markov chain. Second we utilize image
contrast and space relation to model the prior salient map
which is provided to foreground salient nodes and then cal-
culate the saliency of nodes based on absorption probability.
Third, we also exploit background prior to supply the absorb-
ing nodes and compute the saliency of nodes. Finally, we fuse
both the saliency of nodes by cosine similarity measurement
method and acquire the ultimate saliency map. Our approach
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is simple and efficient and highlights not only a single object
but also multiple objects consistently. We test the proposed
method on MSRA-B, iCoSeg and SED databases. Experi-
mental results illustrate that the proposed approach presents
better robustness and efficiency against the eleven state-of-
the art algorithms.

Keywords Saliency region · Image contrast · Space
relation · Background prior · Absorbing Markov chain

1 Introduction

Visual saliency is a concept in neuroscience, psychology,
neural systems, and computer vision [1,2]. The main task of
saliency detection is to locate the more interested object(s) in
a scene and identify them from their neighbors. The extracted
saliencymap can be served as a pre-processing step for many
applications, such as image retrieval [3], image segmentation
[4], image retargeting [5], dominant color detection [6], etc.

Two types of saliency detection methods are developed:
one [7,8] is top-down and task-driven style and the other
[1,2,9–18] is bottom-up and data-driven one. The top-down
method focuses on a specific object and learns salient features
by supervised learning on a larger data set which contains the
specific object, while the bottom-up method relies on some
prior knowledge about salient regions and background, such
as contrast, compactness, etc. In this paper, we will pay more
attention to bottom-up saliency detection.

Bottom-up saliency research has made much break-
through within the past decades [2,7–20]. In detail, Itti
et al. [2] utilize the local center-surround difference to put
forward the saliency model based on multi-scale image fea-
tures. Harel et al. [9] propose a graph-based salient detection
method; thismethod uses edge strengths to denote the dissim-
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ilarity between two nodes on a graph, then regards the most
frequently visited nodes as salient nodes in a local context.
The main objectives in [9] are to predict human fixations on
natural images; the method fails when the background of the
scene is cluttered. Hou and Zhang [10] raise a spectral resid-
ual approach to detect saliency; themethod has a good perfor-
mance for small salient objects but it has insufficient ability
for larger objects since the algorithm regards the large salient
object as part of the scene and consequently fails to identify
remarkable objects. However, these methods concern more
with saliency pixels where the salient object could appear
in the image, and the saliency map of these methods are
always blurred. Later, many scholars focusedmore on salient
objects or regions in the scene, and salient objects with pre-
cise details and high consistency become an important basis
for evaluation of themerits of the algorithm. Cheng et al. [11]
exploit global contrast differences and spatial coherence to
extract salient regions; theirmethod performswell in the case
that the salient objects have remarkable contrast features.
Achanta et al. [12], compute saliency map using the center-
surround principle which compares color traits of each pixel
with average values of the whole image. This method is sim-
ple and efficient. However, it fails for images with cluttered
backgrounds. Achanta and Susstrunk [13] further improve
algorithm based on visual difference—maximum symmet-
ric surround saliency (MSSS), which varies the bandwidth
of the center surround-filtering. Goferman et al. [14] present
a context-aware salient detection algorithm based on four
principles of human visual attention. Zhang et al. [15] use
region contrast, boundary contrast, smoothness prior, center
bias to model a coarse-to-fine saliency and obtain consistent
salient object, but this method has limited ability when the
salient object is significantly close to the image boundary or
when there are background complex scenes. Du and Chen

[1] propose a salient object detection method via random
forest which evaluates the saliency based on the rarities of
patches and contour-based contrast analysis. Zhai and Shah
[16] detect pixel-level saliency though contrast among the
pixel to all other pixels, but color information is ignored for
efficiency. Chang et al. [17] propose a graphical model to
fuse generic objectness and visual saliency together to detect
objects, and the results can highlight salient regions; mean-
while, some non-significant regions are reinforced incor-
rectly in some case. Yang et al. [18] utilize a graph-based
manifold ranking algorithm to extract salient objects. Jiang
et al. [19] formulate saliency detection via absorbingMarkov
chain on an image graph model, which bases the boundary
prior and sets the virtual boundary nodes as absorbing nodes
and the saliency of each node is computed as its absorbed
time to absorbing nodes. It performs better in most case.
However, the small salient object touching image boundaries
maybe incorrectly suppressed, and some smooth background
regions near the image center are highlighted incorrectly.

Saliency detection has made great progress in recent
years, but there are still some issues that remain unresolved.
For example, the methods usually require dealing with more
background data than the interesting object data, or the
methods are inadequate to handle cluttered background, etc.
Inspired by Jiang et al.’s [19] method (AMC), we recon-
sider the prior information including contrast, spatial rela-
tionship and background. And then we exploit these image
traits to provide the prior saliency information, and utilize the
absorbing Markov chain to detect saliency. Our model con-
tains three parts: the first part is the saliency detection via the
foreground salient nodes, the second is the saliency detection
via background nodes, and the third is an integrated saliency
detection method that uses cosine similarity. The main steps
of the proposed method are shown in Fig. 1. In detail, our

Fig. 1 The flow chart of the proposed method. Note: we regard the
Ours_C as method of computing the prior saliency information, the
Ours_F as the method based on the foreground salient nodes, and the

Ours_B as method via the background prior. The Ours represents result
of the proposed model
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Fig. 2 The results of the proposed method. From left to right: the
original images, AMC [19], the proposed method, true-ground (salient
objects are manually labeled)

approach uses super-pixel method SLIC (simple linear itera-
tive clustering, SLIC [21]) to segment the image into different
regions and regards each super-pixel as a node on the graph
and then utilizes contrast and space relation to model the
prior salient regions. Finally, the proposed method exploits
the prior salient region to provide the most salient nodes for
absorbing Markov chain by binary segmentation and calcu-
lates the absorbing probability of each node by absorbing
the Markov chain. Second, we exploit background prior to
obtaining the absorbing probability of each node. Finally,
we fuse both absorbing probabilities and acquire the final
saliency map. We test our method on MSRA-B, iCoSeg and
SED databases, and the experimental results indicate that the
proposed method can suppress the saliency of non-notable
regions near image center as well as image boundary and
perform efficiently against the state-of-the-art methods for
images with cluttered scene.

Compared with AMC, the main contributions of this work
are as follows: (1) We model the prior saliency detection
using the images region contrast and spatial distance to pro-
vide the prior saliency information, and then detect salient
regions based on the foreground salient nodes by absorbing
Markov chain, which uniformly strengthens the consistency
and coherence of conspicuous regions. (2) We introduce a
cosine similarity measurement method and model an inte-
grated saliency maps, which achieves favorable results. If
there are long-range smooth background regions near the
image center, it is intractable issue to use the absorbed time to
obtain the salient regions. In AMC algorithm, AMC exploits
the equilibriumprobability to regulate the absorbed time so as
to suppress the saliency of this kind of regions. However, it is
not always effective. In this paper, we combine the absorbing
probability based on themost salient nodes and the absorbing
probability-based background prior during saliency detec-
tion and try to solve this issue. The examples of AMC and
the proposed method are shown in Fig. 2.

The remainder of this paper is organized as follows: In
Sect. 2, we introduce absorbing Markov chain fundamen-
tals and construct function to calculate absorption probability

of each node. Section 3 details the process that created the
graphs and presents the analysis of absorbing Markov chain
on k-regular graph. And in Sect. 4, we propose our saliency
detection approach. Experimental results and analyses are
given in Sect. 5, and conclusion is shown in Sect. 6.

2 Absorbing Markov chain fundamentals

The absorbing Markov chain is a semi-supervised learning
algorithm.Bymarking a set of given nodes, this paper regards
these labeled nodes as absorbing nodes and the remaining
nodes as transient nodes. Then the absorbing probabilities
which random walker moves from transient nodes to absorb-
ing node can be obtained by absorbing Markov chain, and
so the absorbing probabiliy reflects the relationship between
absorbing node and transient node. The goal is to learn
absorbing probabilitymoving from transient nodes to absorb-
ing node. During the saliency detection, conspicuous regions
always have the similarity. Therefore, we utilize the absorb-
ing probability to represent the saliency of nodes.

This section succinctly states some fundamental results
of absorbing Markov chain [22–24] and then calculates the
probability of moving from each node to the absorbing node.

Let S = {s1, s2, s3, . . . , sm} be a set of states (or nodes),
a Markov chain can be completely specified by the m × m
transition matrix P , where pi j is the probability of moving
from state si to state s j . On absorbingMarkov chain, random
walker starting at any transient state reaches absorbing state
and cannot leave from the absorbing state (not just in one
step), which indicates that any pair of absorbing nodes are
unconnected. To assume that an arbitrary absorbing Markov
chain has r absorbing states and t transient states, and renum-
bering the states making the transient states comes first, the
transition matrix P will have canonical form as follows:

P =
(
Q R
0 I

)
, (1)

where Q is a t-by-t matrix which contains transient proba-
bility between any two transient states, while R is a nonzero
t-by-r matrix and contains the probabilities moving from
each transient state to each absorbing state, 0 is an r -by-t
zero matrix and I is an identity matrix.

For the transition matrix P , the fundamental matrix N =
(I − Q)−1 can be derived from P . The entry ni j of N can be
described as the probability that random walker starts from
the transient state si to the transient state s j . Let bik be the
probability that the transient state si be absorbed in absorbing
state sk , and B is the matrix with entries bik . Then B is
computed as

B = N R, (2)

where B is a t-by-r matrix and R is as in the canonical form.
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The i th row of B represents the absorption probabilities
starting from the transient state si to each absorbing state. If
random walker starting from the transient state si arrives at
the absorbing state sk with larger probability, the saliency of
transient node si will be closer to absorbing node sk since
the saliency of absorbing node sk is known. Therefore, the
proposed method uses the following formula (3) to calculate
the final absorption probability of each node. We verify the
proposed method in Sect. 5:

fi =
{
1, si ∈ R1(si )
max
1≤k≤r

{bik} , otherwise , (3)

where fi denotes the probability which node si is absorbed.
R1(si) is the labeled node set.

3 Graph representations

Given an input image represented as an absorbing Markov
chain, the probability matrix P can be constructed by a
single-layer graph G (V, E), where V is the set of states
or nodes, and E is the set of edges. In this work, each node
is a super pixel generated by the SLIC algorithm [21]. Since
neighboring nodesmay possess similar appearance and nota-
bility, the edges can be represented though the k-regular
graph. On the k-regular graph, each node is connected to
the nodes which neighbor it or share common boundaries
with its neighboring nodes. The edge weights between nodes
can be expressed by affinity matrixW, in which high weight
is regarded as strongly connected pair of nodes, and low
weights denote nearly disconnected nodes. With the con-
straints on edges, the k-regular graph is a sparsely connected.
i.e., most elements of the affinity matrix W are zero. In this
work, the weight wi j between two nodes is expressed by

wi j =
{
e−‖xi−x j‖

σ2 , j ∈ R2(i)
0, otherwise

, (4)

where super-pixel xi and x j are denoted by the mean of the
pixels in corresponding super-pixel image region in the CIE
LAB color space. The super pixel nodes are normalized to
the range [0 1] through themaximum. The constant σ is fixed
to control the strength of the weight. R2(i) is the neighboring
node sets of xi .

In order to calculate the probability transition matrix P ,
we define a new affinity matrix A to signify the relation
of nodes as (5). The row weights of the affinity matrix
A need to be divided by the degree of the correspond-
ing nodes to get the probability transition matrix. In this
paper, we define the diagonal matrix D to normalize the row
of A, D = diag{∑w1 j ,

∑
w2 j , . . . ,

∑
wr j }, Finally, the

transient matrix P is given as (6)

ai j = wi j × sign(wi j ) (5)

P = D−1 × A (6)

where sign(wi j) is a symbolic function, sign(wi j ) = 1 if the
node xi is a transient node or i = j , else sign(wi j) = 0.

In thisway, the randomwalker is restricted to a local region
while its path is determined by the k-regular graph. Absorp-
tion probability moving from transient node to absorbing
node is affected by spatial distance and transition probabili-
ties. i.e., the nodewill obtain greater absorption probability if
it has larger transition probability and is closer to the absorb-
ing node.

4 Saliency detection model

Assuming an input image represented as a graph, the follow-
ing task is to identify the absorbing nodes that most likely
belong to the salient regions or background regions in the
image. In this paper, we calculate absorption probabilities
which move from each transient node to salient region, and
absorption probabilities moving from each transient node to
the background region, respectively. Then we calculate the
integrated saliency map by a cosine similarity measurement
method. The following subsection will describe the process
of the proposed method.

4.1 Saliency detection via the foreground salient nodes

In this subsection, we introduce how to discover the salient
nodes based on image contrast and spatial distance informa-
tion and mark the most significant nodes as the absorbing
nodes by the binary segmentation of Otsu [25] method. Otsu
takes the maximum variance between foreground regions
and background regions as threshold selection criteria and
achieves better segmentation results. And the threshold is
calculated as (7)

δ2(TA) = max
0≤T≤L

δ2(T ), (7)

where δ2(·) is the variance between salient regions and non-
salient regions, T denotes the threshold, and L is the max-
imum of pixels. TA represents the threshold if the variance
takes the maximum.

In visual attention process, those unique, unpredictable,
scarcity and the singularity of the object is to draw atten-
tion, and other objects or background are of less concern.
Image contrast and spatial relationship are important features
for image saliency in previous saliency research [11,14,26].
In general, people pay more attention to the image regions
that contrast strongly with the neighboring regions. Besides,
high contrast to its surrounding regions usually easily attracts
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Fig. 3 The saliency map based on the most salient nodes. From left
to right: a the original images, b Ours_C, c Ours_F (saliency detection
based on foreground salient nodes), d true-ground

attention than high contrast to far-away regions. In addition,
‘center prior’ is considered in some previous saliency mod-
els [27]. For center prior, the nodes are more salient if these
nodes are closer to the image center. It is valid in many cases.
However, it is not always effective in general cases. In our
work, we utilize these prior visual saliency information to
model a salient region detection. In the process of detecting
saliency, we take ‘center prior’ as a smaller weight factor to
avoid over-enhancing insignificant regions near image cen-
ter. The significant contribution degree �(xi ) for the super
pixel node xi can be calculate as

�(xi ) = 1

1 + c · dc(xi )
K∑
j=1

∥∥xi − x j
∥∥

1 + α · dp(xi , x j ) , (8)

where c(0 < c < 1) is the ‘center prior’ weight parameter, α
is spatial distance parameter, K is the total number of super-
pixels. The dc(xi ) is the Euclidean distance from the super-
pixels xi to the image center and normalized to the range [0
1]. This paper regards the centroid of the super pixel region
as super-pixel spatial position. The dp(xi , x j ) is Euclidean
distance between super pixel xi and x j .

The super-pixel xi is salient when �(xi ) is high. Hence,
the prior saliency of the node xi can be calculated as

Spriori(xi ) = 1 − e−�(xi ), (9)

where Spriori(xi ) is the prior saliency map.
We represent themethodof (9) asOurs_C; the result canbe

seen in Fig. 3b. Although this proposed approach has limited
capacity to highlight consistency of the significant object or
regions, the prior saliencymap can provide effective saliency
information.

We reconsider the absorbing Markov chain model to
improve the consistency of saliency detection. In detail, we
mark the most salient nodes as absorbing nodes by binariz-
ing Spriori(xi ). The threshold is selected by (7) so that salient
nodes are labeled as accurately as possible. And we regard
the node xi as the most salient nodes if Spriori(xi ) > TA. In
detail, we label these salient nodes as absorbing nodes, and

Fig. 4 The failure example based on most salient nodes. From left to
right: a the original images, b Ours_C, c the binary image, d Ours_F,
e Ours, f true-ground

the remaining nodes as transient nodes. Then we can get the
transition matrix P and calculate absorption probability of
the node xi by (3). The absorbing nodes belong to salient
nodes, so super-pixel xi is salient if random walker starting
from xi to absorbing nodes has a large absorption probabil-
ity. Therefore, the saliency map M f (xi ) based on the most
salient nodes can be represent as

M f (xi ) = fi (10)

This method based on foreground salient nodes can be
regarded as Ours_F. It can improve the consistency of the
salient object, as seen in Fig. 3c and this method is valid in
most case.However,when the contrast of background regions
are high in some case, and consequently some background
nodes are labeled as absorbing states incorrectly by binary
segmentation (see Fig. 4c), it leads to some background
regions enhanced as well as salient objects (see Fig. 4d). To
alleviate this problem and further improve the performance,
we utilize the boundary prior to inhibit the saliency of non-
salient nodes. The following subsection gives detailed expla-
nation.

4.2 Saliency detection via background prior

The background often manifests local or global appear-
ance connectivity with each of four image boundaries as
salient objects less likely occupy all four image boundaries
[18,19,28] and background regions often connectwith image
boundaries. Inspired by this prior saliency information, we
describe the image boundaries’ nodes as the absorbing nodes;
therefore, the random walker starting in background nodes
will arrive at the absorbing nodes with larger absorbing prob-
ability. That is, larger absorption probability will indicate
lower saliency for the nodes. So the saliency map Mb(xi ) via
the background nodes can be denoted as (11). Specifically,
the transition matrix Pbased on boundary prior can be got by
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Fig. 5 The results of background-based saliency map. a The original
images, b Ours_F, c Ours_B, d Ours (the proposed method)

(6), we can easily extract matrix Q and R by (1), and the fun-
damental matrix N is calculated relied on Q, and absorption
probability matrix B is computed by (2). Finally, we obtain
the absorption probability of nodes by (3).

Mb(xi ) = 1 − fi (11)

Figure 5c shows results of proposed approach (Ours_B) in
this subsection. The saliency map Mb(xi ) can suppress the
non-salient regions better and protrude remarkable regions,
but it is noted that the Ours_B has poor performance to detect
salient object when the object touches image boundaries, as
shown in third saliency map of Fig. 5c, while the presented
model (Ours_F) in Sect. 4.1 can avoid this issue effectively.
The Ours_F can enhance the uniformity of salient object, and
it does not matter whether the object close to image bound-
ary. And the Ours_B can suppress the background better than
Ours_F when some background regions have high contrast.
The saliency measures by Ours_F and Ours_B are comple-
mentary to each other.

4.3 Cosine similarity measurement of saliency maps

In this paper, we integrate Ours_F method with Ours_B
method to improve the performance by cosine similaritymea-
surement. The node xi always is salient if both M f (xi ) and
Mb(xi ) are large. We introduce the similarity measurement
to evaluate similarity of both methods. M f (xi ) and Mb(xi )
are larger, illustrating that they are more similar and the
node xi is more likely to be a significant node. Thereby we
compute integrated saliency map relied on similarity mea-
surement. Similarity measurement estimates the difference
between two individuals [29,30]. In this work, we evalu-
ate similarity between M f (xi ) and Mb(xi ) usiing extended
cosine similarity function Simg (M f (xi ), Mb(xi )), which is
defined as

Simg(M f (xi ), Mb(xi ))

= M f (xi ) × Mb(xi )∥∥M f (xi )
∥∥2 + ‖Mb(xi )‖2 − M f (xi ) × Mb(xi )

, (12)

where Simg (M f (xi), Mb(xi)) ∈ [01], the Simg (M f (xi ),
Mb(xi )) closer to 1 indicates smaller difference between
M f (xi) and Mb(xi).

The node xi has higher saliency when both M f (si ) and
Mb(si ) are closer to 1, so we calculate an integrated saliency
S(M f (si ), Mb(si )) based on extended cosine similarity by
(13).

S(M f (si ), Mb(si ))

= Simg(M f (si ), Mb(si )) × M f (si ) + Mb(si )

2
(13)

The examples of final results are shown in Fig. 5d. It is worth
noting that cosine similaritymeasurement enforces these two
maps to serve as the prior and cooperate with each other in
an effective manner, which suppresses the background and
uniformly highlights the salient regions in an image.

5 Experiments

To validate our proposed approach, we evaluate our model
in terms of precision, recall, Fβ , mean absolute error (MAE)
and precision-recall curve (PR curve). At the same time, we
compare our method against state-of-the-art algorithms (IT
[2], GBVS [9], SR [10], RC [11], FT [12], RA [13], CA [14],
LC [16], SVO [17],GBMR[18] andAMC[19].Most of these
algorithm codes are available in the authors’ home page).
Our experiments are performed on three datasets: MSRA-B,
iCoSeg and SED.

5.1 Data sets of experiment

The MSRA-B [7] contains 5,000 images, and salient objects
were manually labeled by Jiang et al. [31]. MSRA-1000 is a
subset of the MSRA-B with 1,000 images. And the iCoSeg
[32,33] is a co-segmentation set, and provides 38 groups
of 634 images, along with pixel ground-truth hand annota-
tions, and we use it to evaluate the performance of detecting
saliency. The SED [34] has two subsets: one is SED1, which
has 100 images, and each image contains a significant object;
the other is SED2 with 100 images and each image has two
significant objects. The SED also provides annotation with
the labeled salient object for each image.

5.2 Evaluation metrics

For each method, the precision and recall for an image are
calculated by segmenting each saliency map into a binary
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map with a given threshold T1 ∈ [0, 255] and then compar-
ing with the ground truth mask. The precision value is the
ratio of salient pixels correctly assigned to all the pixels of
extracted regions,which reflects the accuracy of the detection
algorithm. The recall value corresponds to the percentage of
detected salient pixels in relation to the ground-truth number,
which represents the detection consistency. The precisions
and recall can be depicted by the PR curve on the data set.
The precision and recall rate for each image are quantified
as follows:

Precision =
∑W

i=1
∑H

j=1 B(i, j) · G(i. j)∑W
i=1

∑H
j=1 B(i, j)

(14)

Recall =
∑W

i=1
∑H

j=1 B(i, j) · G(i. j)∑W
i=1

∑H
j=1 G(i, j)

, (15)

where B is the binary salient object mask generated by
thresholding saliency map andG is the corresponding binary
ground truth. W and H are the width and height of the
saliency map.

The Fβ is a weighted harmonic mean between the preci-
sion and recall values, which is the overall performance mea-
surement.Different fromcalculatingPRcurve,we exploit the
fixed and adaptive thresholding TH in the process of gener-
ating binary salient object masks. Fβ is defined as (17).

TH = 2

W × H

W∑
i=1

H∑
j=1

Smap(i, j) (16)

Fβ = (1 + β2) × Precision × Recall

β2 × Precision + Recall
, (17)

where β2 = 0.3 stresses precisionmore than recall, similarly
to [11,12].

The MAE is a statistical measure that represents the dif-
ference between estimates and actual values. In this paper,
the MAE is utilized to estimate the dissimilarity between the
saliency map and ground truth. And the lower MAE value
indicates better performance. The MAE is the average of
absolute error between the continuous saliency map Smap

and the binary ground truth G, which is defined as

MAE = 1

W × H

W∑
i=1

H∑
j=1

|Smap(i, j) − G(i, j)| (18)

5.3 Performance comparison

Experimental setup. For presented approach, we set the num-
ber of super-pixels K = 250 and discuss the effects of
changes of super-pixel number K value on the proposed
method in Exp. 1. In Eq. (4), the weight σ 2 is set to con-

trol the strength of weight between a pair of nodes σ 2 = 0.1,
using the same setting as [15,18,19]. The ‘center prior’ para-
meter c to weight the impact of ‘center prior’ and spatial
distance parameter α is used to control influence of spatial
distance in Eq. (8); we take c = 0.2 and α = 0.7. All experi-
ments are tested on a Dual Core 2.8GHz machine with 2GB
RAM.

Exp. 1: the effects of changes of super-pixel number
K on the proposed approach. In this paper, the presented
schedule utilizes super pixel method SLIC [21] to pre-
process image and then detects distinctive regions. The
paper assesses the impact of super pixel number K on the
proposed method, and quantitative results comparison has
been made by setting different supper pixel number K to
guide the selection of K ; the PR curves on the iCoSeg are
shown in Fig. 6. In detail, Fig. 6a gives the PR curves of
Ours_C for different K , and Fig. 6b shows the PR curves
of the final result of the proposed algorithm (Ours) for
different K .

As shown in Fig. 6a, when K changes from 50 to 250, the
PR curves of Ours_C can be improved. While PR curves’
performance of Ours_C is similar between K = 250 and
K = 300. Meanwhile, the PR curves of Ours perform better
when K equals 250 or 300 (see Fig. 6b). And the average
running time of proposed method is given in Table 1; it can
be found that the proposed method has the longer average
run time for larger K . Therefore, considering the compu-
tational complexity and the performance of PR curves, we
select supper number K = 250 for all experiments.

Exp. 2: comparisons of the three parts for proposed
method. In this experiment, we evaluate our method based
on prior saliency information (Ours_C) and the results of the
proposed method (including Ours_F, Ours_B, Ours) in terms
of Fβ , precision and recall. The results on MSRA-1000 can
be seen in Fig. 7. Inspired by AMC [19], we also compare the
result of AMCwith the proposed method. The AMC regards
the saliency of nodes as the expected time, which the nodes
start from the transient state and arrive at the absorbing state
on the absorbing Markov chain.

Figure 7 shows the average precision, recall and Fβ . Com-
pared with the Ours_B (saliency detection via background
prior), the Ours_F (saliency detection via the foreground
salient nodes) has better performance in terms of recall, but
the Ours_F strengthens the non-significant regions in some
cases, which causes lower precision and Fβ . On the other
hand, the Ours_B can inhibit the background, and has higher
precision and Fβ against the Ours_F. The proposed method
(Ours) integrates the Ours_F and the Ours_B; although its
precision scores are 1.5% lower than the Ours_B, its recall
and Fβ perform better. In addition, we compare our method
with the AMC; our algorithm improves effectively.

Exp. 3: the sensitivity of the proposed method to noise.
The Salt and Pepper noise and Gaussian White noise are
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Fig. 6 The effects of changes of super-pixel number K on the proposed
approach. a The PR curves of Ours_C by setting K = 50, K = 100,
K = 150, K = 250, K = 300 on iCoSeg database. b The PR curves
of Ours by setting K = 50, K = 100, K = 150, K = 250, K = 300
on iCoSeg database

Table 1 Average running time by setting different super pixel number
K in the iCoSeg database

K 50 100 150 200 250 300

Time (s) 0.52 0.57 0.66 0.73 0.81 0.90

The mean size of image in iCoSeg is 506.8 × 532.7

employed to measure the sensitivity of the proposed method
to noise. Two group saliencymaps of noise images have been
shown in Fig. 8, and the quantitative results have been given
in Fig. 9.

In detail, the experiment sets the Salt and Pepper noise
density varying from 0.01 to 0.35, and tests the effects of
Salt and Pepper on the algorithm; the visual results can be
seen in Fig. 8a, and the weighted harmonic mean Fβ of pro-

Ours_C Ours_F Ours_B AMC Ours
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1
Precision Recall F

Fig. 7 The comparisons of the three parts for proposed method on
MSRA-1000

posed method is shown in Fig. 9. We regard OursNSP as the
relationship between Fβ and Salt and Pepper noise density.
Simultaneously, this paper also utilizes images containing the
Gaussian White noise to assess the proposed approach. The
variance ofGaussianWhite noise is regarded as noise density
varying from 0.01 to 0.35, and the mean is zero. The detec-
tion result of Gaussian White noise images can be seen in
Fig. 8b. The Fβ -Gaussian-White-noise curve is represented
by OursNGW.

As illustrated in Fig. 9, the proposed algorithm can bet-
ter suppress the influence of the Salt and Pepper noise than
the influence of the Gaussian White noise. For the Salt and
Pepper noise, when the noise density is less than 0.15, the
weighted harmonic means Fβ is higher than 0.6. The Fβ can
retain higher than 60% if only the noise density of Gaussian
White noise is less than 0.03. Therefore, the proposedmethod
has better robustness when noise density is less 0.03. It is
worth noting that the presented method can also suppress
Salt and Pepper noise well if the noise density is less than
0.15.

Exp. 4: quantitative comparison of the MAE. The MAE
is utilized to evaluate the proposed approach against the 11
state-of-the-art methods onMSRA_B; the results can be seen
in Fig. 10. It is weaker for SVO algorithm to inhibit the non-
salient region, and it consequently leads to the larger MAE.
AMC and GBMR highlight the prominent regions and there-
fore they have smaller MAE. Compared with the GBMR, the
result of the proposed algorithm is lower, which indicates that
our method has higher consistency in terms of MAE.

Exp. 5: quantitative comparison of PR curves. The PR
curves of the 11 algorithms mentioned on three databases
are provided in Fig. 11. The MAC, GBMR and the pro-
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(b) 

(a) 

Fig. 8 The sensitivity of the proposed method to noise. a The Salt and
Pepper noise images and their saliencymap. From left to right: the noise
density is 0.01, 0.05, 0.1, and 0.15 in Salt and Pepper noise images. b

The Gaussian White noise images and their saliency map. From left to
right: the noise density is 0.01, 0.02, 0.03, and 0.05 in Gaussian White
noise images
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Fig. 9 The effects of noise on the proposed method

posed method have better performance than the other meth-
ods on the MSRA-B and SED1 datasets, as shown in
Fig. 11a, c. This illustrates that the presented method is desir-
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Fig. 10 TheMAE results of the proposed method and eleven the state-
of-the-art methods on MSRA_B

able for detecting single significant object since the image
always has one object on MSRA-B and SED1 datasets. The
proposed algorithm has better performance than the other
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Fig. 11 Quantitative comparison of saliency methods on three image databases. a The MSRA-B database, b the iCoSeg database, c the SED1
database, d the SED2 database

methods on the ICoSeg and SED2 datasets, which is shown
on Fig. 10b, d. There are one or more remarkable objects
in an image on the ICoSeg datasets; therefore, our algo-
rithm is robust for multi-object scene. In general, the pre-
sented method is satisfactory in terms of PR curve on three
databases.

Exp. 6: qualitative comparison. We provide the visual
comparison of different methods in Figs. 12, 13, and 14.
The true grounds are provided at the same time. The GBMR,
AMC, and the proposed methods belong to semisupervised
learning algorithm. Since GBMR and AMC show over-
reliance on background priori, it results in nonsignificant
regions around the center being enhanced or salient regions
touching image boundaries being suppressed incorrectly in
some cases; the second saliency maps in Fig. 13e, f are the
fail examples. The proposed approach utilizes regional con-
trast, spatial relationship to detect remarkable region and sup-
presses non-salient region near image center or image bound-
aries, as shown in second saliency map of Figs. 13g and 14g.
The RC method has obvious advantages when large contrast

differences exist between salient object and background, as
shown in first saliency map of Fig. 13d, but the contrast is not
always effective in some cluttered background, as shown in
the former two saliency maps in Fig. 12d. Our model eval-
uates image saliency by cosine similarity measurement; the
results of the proposed method can highlight salient regions
better than other methods in messy sense (see Fig. 12e). The
GBVS method forces on salient points and the prominence
objects are imprecision in saliency maps. In summary, the
proposed method is effective to strengthen the consistency
of salient object, and our method performs well for cluttered
sense.

5.4 Running time

Table 2 shows the average time taken by each method for
all the 5,000 images in the MSRA-B database. Compared
with IT, FT, RA, SR, CA, GBMR and AMC, the proposed
approach has longer execution time. But our approach per-
forms better in terms of PR curves and the MAE. Note: all
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Fig. 12 The saliency maps of different methods on the MSRA-B database. a The original images, b GBVS, c SVO, d RC, e GBMR, f AMC,
g Ours, h true-ground

Fig. 13 The saliency maps of different methods on the iCoSeg database. a The original images, bGBVS, c SVO, d RC, e GBMR, fAMC, gOurs,
h true-ground

Fig. 14 The saliency maps of different methods on the SED database. a The original images, b GBVS, c SVO, d RC, e GBMR, f AMC, g Ours,
h true-ground. From top to bottom: the SED1 database, the SED2 database
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Table 2 Average running time taken to compute a saliency map for images in the MSRA-B database

Method IT FT RA SR CA SVO GBVS GBMR AMC Ours

Time (s) 0.25 0.266 0.54 0.07 72.29 53.42 2.085 0.255 0.193 0.654

The mean size of image in MSRA-B are 293.2 × 399.6

the compared algorithms are implemented in matlab so as to
enhance the comparability of the different algorithms. The
super pixel generation by SLIC [21] spends 0.163s, we did
not consider the running time of SLIC in GBMR, AMC and
the proposed method.

6 Conclusions

We incorporated regional contrast, spatial relationship, cen-
ter prior and background prior to extract salient regions
on absorbing Markov chain. The proposed method detected
salient regions on super-pixel image,whichmade ourmethod
process less image data. The saliency detection based on
the foreground salient nodes (Ours_F) was proposed, which
strengthens the consistency and coherence of noteworthy
regions. And the saliency detection via background prior
(Ours_B) highlighted the notable regions. Finally, we intro-
duced an integration method by cosine similarity measure-
ment, which makes detection result perform better than
Ours_F and Ours_B in terms of recall and Fβ . Experi-
mental results on three databases show that the proposed
method suppresses the non-salient regions and consistently
outperformed existing saliency detection methods on clut-
tered sense, yielding a satisfactory PR curve as well as visual
quality. Meanwhile, the presented approach can suppress the
Salt and Pepper noise and Gaussian White noise well when
noise density is less than 0.03. In future work, we will opti-
mize running time or build a new model by incorporating
high-level knowledge, which makes the algorithm have even
better performance, and consider sensitivity of the method to
higher density noise.
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